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Abstract
Moving object detection in complex environments is a challenging task. Recently, many deep learning-based methods have
improved the detecting accuracy. However, because of the supervised learning nature, these methods cannot deal with unseen
scene, where manually generated groundtruth of training data is unavailable. Furthermore, due to the limitation of generality,
their online detection performance is not satisfactory, where the scene changes a lot over time. In this paper, we propose a
new unsupervised method for moving object detection, which performs well in both seen and unseen scene, offline and online
detection. It can better adapt to changes in environmental lighting and has good tolerance for dynamic backgrounds in the
environment. Based on the analysis of the reflections of objects in a scene, the proposed method not only processes images at
the pixel level but also takes into account the characteristics at the object level.We distinguish between the ordinary point areas
and complex point areas in an image and process them separately to improve the detection accuracy. The proposed method
is tested using several challenging datasets, and the results show its effectiveness and applicability in complex situations.

Keywords Moving object detection · Inner-point-pairs · Dynamic background model · Unseen-scene and online detection

1 Introduction

Detecting moving objects is an important task in video
surveillance. Its goal is to extract the moving objects that
pass through a scene. It has important applications in many
fields, such as the intelligent monitoring, identification and
tracking of intelligent robots [1–5], and so on. Over the
decades, although much research has been done in this field,
there are still many factors that affect the accuracy of object
detection, such as strong illumination changes and dynamic
backgrounds. To achieve high moving object detection accu-
racy, most models process a video image at the pixel level.
This is helpful to improving the detection accuracy, but it is
easy to ignore the connection and correlation between simi-
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lar areas in the image, and it may omit some important visual
information in the image.

At present, there are threemainmethods formoving object
detection.

(1) Optical flow [6–8]: This detects a moving object by
establishing the optical flow field of an image and observing
the motion vector of the related pixels. This method is sensi-
tive and can be applied to both static cameras and dynamic
cameras. However, the calculation is complicated and it is
easy for detection errors to occur due to the variability of the
scene, such as lighting changes, background noise, etc.

(2) Frame difference [9, 10]: This compares the informa-
tion of the pixels among adjacent frames. When there is an
object passing through the frames, the differences between
the frames will exceed the threshold. The principle of this
method is simple and its detection speed is fast. However,
there are obvious problems, such as the “double shadow”
problem when the object moves too fast, and the “hole”
problem caused by the overlap of objects between different
frames.

(3) Background subtraction
In recent years, background subtraction has become the

most effective and the most studied method. Some surveys
[5, 17, 18, 46] have made detailed review of background
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subtraction from different perspectives. First, a background
model is established through training, and the current frame
is compared to the background model or background frame
to obtain foreground information. The background model is
not strictly a background model; it is an algorithm process or
network framework. It can be divided into three categories:
(1) Supervised background subtraction based on deep learn-
ing [11–26]. These methods are based on the combination of
a neural network and other detection methods to improve
the detection accuracy in some scenarios. Recently, deep
learning-based approaches have achieved good accuracy in
several image scenarios and more methodologies are being
proposed. However, as a supervised method, a substantial
amount of groundtruths is necessary when training, which
generally results in high costs if the data are even available.
In addition, it depends heavily on the foreground objects in
the training set andwhen applied to unseen scenes, the perfor-
mance of these methods will drop a lot, which has a negative
influence on practical applications. Therefore, although it
achieves good offline detection accuracy, the online detec-
tion capability is poor. Some supervised methods in recent
years [24–26] have shown that they can use a large number of
data sets to train models and use it in unseen scene; however,
they do not provide models with trained weights. The sur-
veys [17, 18] gave a comprehensive review of background
subtraction based on deep learning. For more details, we
can refer to these two valuable surveys. (2) Semi-supervised
background subtraction. In recent years, semi-supervised
background subtraction methods based on graph signal pro-
cessing have been proposed [27–29]. They obtained the
instances of the videos using semantic and instance seg-
mentation methods and used a temporal median filter as the
background initialization. Then, the optical flow, intensity,
and texture features of each instance was obtained, and as
a node, these representations generated graph construction.
Finally, a semi-supervised learning algorithm was used to
train the parameters. Compared to supervised methods, it
avoids hungry data learning required in deep learning and
achieved good accuracy. The method is new developments
in the field of computer vision and end-to-end architec-
tures for video analysis with semi-supervised learning. (3)
Unsupervised background subtraction [30–47]. First, a back-
groundmodel is established through training, and the current
frame is compared to the background model or background
frame to obtain foreground information. After a stable and
anti-interference background frame is estimated, foreground
information can be extracted accurately and quickly. There
is no need for supervised learning, which makes background
subtraction the most practical and worthy method for study-
ing. It achieves a better effect for illumination changes and
dynamic background but it still has much room for improve-
ment.

Based on the analysis of the pixel level and object level,
this paper proposes an inner-point-pairs model (IPP) based
on the point pair reference for the same object. Based on the
brightness characteristics of the objects in different regions
of an image, the image pixels are divided into several differ-
ent classes. In each pixel class, a series of reference points
are established for each pixel. By building reference point
models, the model determines whether the pixels belong to
its original object class or belong to the foreground object.
Regarding the dynamic background pixels, we can deter-
mine what object is moving or they are moving amongwhich
object classes to model the background.

After inner-point-pairs are established, the proposed
model does not need to be updated in real time, and the
background model will not be affected by slow or strong
illumination changes. In addition, the proposed method pro-
vides a good solution to deal with dynamic backgrounds. We
evaluated the proposed method on a number of datasets and
compare it with most state-of-the-art methods. The experi-
mental results show that the proposed method achieves great
performance.

2 Related works

2.1 Unseen-scene detection and online detection

2.1.1 Unseen-scene detection

Unseen-scene detection refers to applying a method to a
new scene whose background and foreground targets are
unseen in advance and that has no available groundtruth
[19]. According to the training and learning mechanisms,
we can divide them into supervised methods and unsuper-
vised methods. The difference between them is whether or
not groundtruth training is required during the implementa-
tion of the method. Supervised methods need to determine
the groundtruth first. In the training of convolutional neural
networks, a large number of image frames and groundtruths
containing foregrounds are required as the input and the qual-
ity of the training results is greatly related to the quantity
and quality of the training frames. Unsupervised methods
focus on judging the image to be detected according to the
pixel statistics. It does not require time-consuming man-
ual groundtruth production; therefore, its applicability is
stronger and it is much more convenient.

Since groundtruth and foreground training are not
required, unsupervised methods can be applied to unseen-
scene detection. It can use the initial video frames to initialize
themodel or conduct background training, and then thedetec-
tion can be executed. Supervised methods are difficult to be
applied to unseen-scene detection. Due to the lack of training
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data with corresponding groundtruths, its detection mecha-
nism is no longer valid.

2.1.2 Online detection

According to the functions in practical applications, detec-
tion can be divided into offline and online detection; and the
methods can also be divided into two types: those only for
offline detection and those able to conduct online detection.
Online detection refers to using only the data that occurred
in the previous period for training, and then detecting what
happened in the subsequent period online. Offline detection
refers to using full-time (interval extraction) data for training
to detect what has happened in the time period. Whether a
method canbe used for online detection is essentially affected
by its generalization ability: whether it can detect moving
objects that have not been learned or trained.

An unsupervised method does not learn a specific
groundtruth, and so it is generally applicable to online
detection as long as the detection speed is appropriate. A
supervised method relies on the groundtruth for learning.
These methods have difficulties detecting objects that are
quite different from the trained foreground in the groundtruth.
Therefore, it is difficult to apply supervisedmethods in online
detection.

Unseen-scene detection and online detection are both
important for practical applications. Therefore, unsupervised
methods are advantageous in practical applications. In this
paper, we focus on researching unsupervised and online
detection.

2.2 Background subtractionmethods

Among the related background subtraction algorithms, the
Gaussian mixture model (GMM) proposed by Tom SF
Haines [32] was proposed early on and is widely used. Based
on the brightness information of each pixel in the training
datasets, the GMM and its improvements [33, 34] build a
Gaussian Mixture Model and determine the foreground pix-
els according to whether they satisfy the trained probability
models. The model needs to be constantly updated to adapt
to changes in the ambient lighting and it is difficult to choose
an appropriate learning rate. To solve the shortcomings of
the GMM, the kernel density estimation (KDE) [35, 47] for
object detection is proposed. It determines the parameters
based on some training frames to achieve nonparametric esti-
mation, making it better for complex backgrounds. Shengqin
Jiang and Xiaobo Lu et al. [37] proposed a method of assign-
ing different frame weights and replacing inefficient frames
to update the background model to adapt to lighting changes
and complex backgrounds, making it more effective at rep-
resenting dynamic background.

The above methods are based on pixel-based models,
and there are also some background modeling methods
based on spatial references. M. Van Droogenbroeck et al.
[38] proposed a method based on spatial sample modeling
called visual background extraction (ViBe). The ViBe and its
improvements [38–40] use a single frame of a video sequence
to initialize the background model; and they assume that for
a pixel, its neighboring points have similar characteristics.
According to the spatial distribution characteristics, a sample
set is created for each pixel. The background model updates
via a different random rule and the ViBe is a nonparametric
model. When detecting objects, it examines whether the tar-
get pixels are close to the sample value in the sample set to
distinguish the foreground from the background.

In previous work, the grayscale arranging pairs model
(GAP) and its improvements were proposed [41–43]. They
find reference points for each pixel in an entire image based
on the statistics of the image training set. These methods
based on an entire reference image can well solve the prob-
lems caused by lighting changes, and do not require real-time
parameter updating. Therefore, they are faster than the meth-
ods that need to constantly update the backgroundmodel. The
Cooccurrence Probability-based Pixel Pairs model (CP3)
[42] considers some situations in complex environments,
such as the movement of objects in a scene. In the Co-
occurrence Pixel-Block Pairs model (CPB) [43], the authors
introduced a mechanism named Hypothesis on Degradation
Modification extended from CP3 to adapt the background
changes and reinforce robustness to resist the “noise” in real
applications and achieved better results. However, the spatial
principle established by the reference points in a scene still
does not have an optimal solution. Although these methods
have used the statistical relationships between pixels and pro-
posed that similar pixels can be used as a reference, they did
not explain the reasons for the effectiveness of the method,
and they lacked reliability in the search and establishment
of similar reference points. Therefore, they can be further
improved. In this paper, the underlying theoretical principles
for adopting similar reference pixels are given, and a new
method based on reference pixels is proposed. Particularly,
some complex cases can be effectively solved according to
the proposed theory.

The main contributions of this paper are as follows.

1. The underlying theoretical principle for inner-point-pairs
is given, and a newmethod based on the inner-point-pairs
model is proposed.
The reflective characteristics of the same object or mate-
rial are relatively similar, and the intensity difference of
the pixels in the same object remain stable under an illu-
mination change. Utilizing this principle, we can divide
the image into different areas according to the differ-
ent types of objects. With this theory, some complex
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detection problems such as dynamic backgrounds can be
solved. Furthermore, it provides a new idea for methods
based on image object segmentation.

2. Specific algorithms are proposed to implement the pro-
posed method.

In the algorithm, we establish reference point models for
each pixel, and apply different modeling strategies to pixels
with different properties. First, it classifies different pixels
based on the reflective properties of the objects in the image.
Then, it establishes reference points based on the statistical
characteristics of the pixels in each class. For dynamic back-
ground points, it uses a mixed Gaussian model to analyze the
membership classes. Finally, a small part of random cluttered
background points is dealt with according to the correlation
coefficient of the pixels.

The method is not affected by changes in the light inten-
sity, and there is no need to update the parameters in real
time. Experiments verify that it has higher accuracy. Espe-
cially in complex environments, it is robust and achieves high
accuracy.

3 Proposed approach

Moving object detection from videos taken in complex envi-
ronments is a challenging task. Dramatic lighting changes
and dynamic backgrounds are the two most difficult chal-
lenges. By analyzing the reflective properties of the object
materials, this method proposes a new solution to these prob-
lems.

3.1 Reflective properties of objects

In a period, if the ambient light is constantly changing, objects
made of different materials often have different degrees of
sensitivity to the changing light intensity. For example, the
reflection of an object made of cloth is often insensitive to
light changes. Even under severe light changes, its intensity
will not changegreatly.Meanwhile, the reflection of anobject
made of wood or stone will change greatly when the ambi-
ent light changes. Furthermore, although a single pixel has a
large intensity change when the light intensity changes dras-
tically, the differences among pixels showing the same object
material is relatively small because the reflective properties
of the same material are relatively consistent. This means
that when the light intensity increases or decreases, the pix-
els showing the same object material have the same degree
of increase and decrease in their intensity.

In the description of this paper, for the sake of simplicity,
it is assumed that the same object is composed of the same
material. If an object is composed of two or more materials
with different reflective properties, it can be treated as mul-

tiple objects. If the composition and material characteristics
of different objects are the same, they can also be treated
as a single object. Figure 1 shows some pixels’ intensity
over a period of time. P, Q, and W are three points on the
cloth, wood, and distant view, respectively, in the same scene.
Their intensities have obvious differences when the lighting
changes. The three pointsP1,P2, andP3, which belong to the
same type of object, have the same changing characteristics
with each other, even if their own intensity fluctuates greatly
when the ambient light changes.

From the intensity value curves of the pixel points in dif-
ferent parts of the image, it can be seen that the shapes of the
pixel intensity curves of the same objects are similar, whereas
those from different objects are quite different. At the statis-
tical level, the intensity vectors from the same object over a
period of time have a strong correlation, whereas the corre-
lation between the intensity vectors from different objects is
poor. According to this property, we can segment an image
according to the category of the object. There are strong sim-
ilarities between the pixels form the same object, which can
be used as a basis for cross-references.

3.2 Ideal model

3.2.1 Cross-reference principles

According to the previous analysis, we can divide the pixels
of an image into different classes. Each class represents a
background object class. Pixels from the same object have a
strong correlation. Therefore, for each pixel, we can select
a set of pixels within the same object as reference points.
In general, the intensity relationship between a pixel and its
reference point remains stable. When a foreground object
occludes the pixel, the intensity of the pixel changes greatly.
However, different from the changes due to the influence of
other background factors such as lighting, the foreground
object only causes the intensity of the area near the pixel to
change, and it has little effect on other pixels of the object.
That is, most of the reference points of the target pixel will
not be affected. Therefore, the appearance of the foreground
object destroys the stable difference between the pixel and its
reference pixels. Based on this property, the area of the fore-
ground object can be detected. To make the detection more
accurate and robust, multiple reference points can be selected
for each pixel to conduct a comprehensive evaluation.

3.2.2 Dynamic background case

In some complex environments, in addition to the constantly
changing ambient lighting, objects in the background can
also change, such as the constantly shaking leaves in a scene,
a rotating fan in the background, and large-scale background
changes caused by camera shake, etc. The objects in the back-
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Fig. 1 The intensity values of different points in a image and their dif-
ferences. (The ambient light is constantly changing.) The first row of
pictures shows the intensity values of selected pixels showing differ-
ent objects in the image over a period of time while the ambient light

changes. From left to right: P (cloth), Q (wood), andW (distant view).
The second row shows the intensity value of three different points on
the same object (cloth) over a period of time. From left to right: P1, P2,
and P3. The third column is the differences between them

ground are moving. The image shows that the pixels in these
areas are switching between different objects, as is shown in
Fig. 2.

The intensities of the pixels under the influence of these
complex factors often have great changes and are different
from the statistical characteristics of the existing objects in
the scene. However, even if these pixels are constantly chang-
ing, they always change back and forth between the objects
existing in the scene. For example, the edges of leaves always
change between the leaves and the background, the rotating
fan always switches between the fan blade and the back-
ground, and the changes at the edges caused by camera shake
are also switched back and forth between the objects on both
sides. Therefore, in the dynamic background area, we should
determine which kinds of objects it switches between, and
set two or more sets of reference points accordingly.

One of the most critical problems that this model needs to
solvewhen it is implemented is how to accurately segment an
image into different object regions. Because the actual scene
is generally unseen and complex, the current segmentation
algorithms cannot achieve the ideal segmentation effect at
all. However, based on the reflective property of objects ana-
lyzed above, we can use clustering instead of segmentation.
Weanalyze the training set statistically, cluster the pixelswith
the same intensity characteristics in the training image frames
into the same class, and treat them as the same object. The
implementation of image pixel clustering is muchmore prac-

tical than object segmentation, and so we segment images
based on a clustering algorithm. In addition, there are some
important issues, such as how to distinguish between static
background points and dynamic background points, how to
determine the categories of the dynamic background points,
etc. We implement the approach with practical algorithms in
the next section.

4 Algorithms

4.1 Pixels classification

Figure 3 shows our system flow diagram. Detailed descrip-
tions of each module are given in the following sections.

Suppose that the number of images in our training set is T ,
which represents the number of frames of this training video.
The training set can be represented as

S � {I1, I2, I3, I4 ... IT }, (1)

where I1, I2… IT are the images in the sequence. The number
of pixels in each image isW ×H. Therefore, the training set
can be seen as a three-dimensional space

S � { (u, v, t) | 0 ≤ u ≤ W , 0 ≤ v ≤ H , 0 ≤ t ≤ T }.
(2)
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Fig. 2 Point P in the first row of pictures is a point in the area of the fan blade that is constantly rotating, and the right picture shows the change of
its gray value with time. Point P in the second row of pictures is a point on the picture taken by a camera. The right picture shows the change of its
gray value with time

Fig. 3 System flow diagram for
modeling
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Fig. 4 Point P and Q in the training image sequence

Each element in the three-dimensional space is a pixel’s
intensity, whose value range is [0, 255].

Suppose P is a pixel located on (u, v) in one video frame t,
which is denoted as Pt(u, v). We arrange the intensity value
of (u, v) in each frame so that it can be denoted as a vector

P(u, v) � [p1, p2, p3, p4 ... pt] (3)

The vector P(u, v) is a basic parameter for a pixel. Just
as Fig. 4 shows, the target pixel P and an arbitrary pixel Q
located at (u′, v′) in the image can be expressed as follows:

P(u, v) � [p1, p2, p3, p4 ... pt ]

Q(u′, v′) � [q1, q2, q3, q4 ... qt ]
(4)

As is shown in Fig. 1, the shapes of pixels’ intensity curves
from the same objects are similar whereas those from differ-
ent objects are quite different. Therefore, we can classify the
pixels in an image using a clustering algorithm (Fig. 5). There
are many clustering algorithms that can be chosen. Consid-
ering the effectiveness and efficiency, we chose K-means
clustering algorithm.

The K-means clustering algorithm can cluster the points
into K clusters according to the value set of K in advance.
For clustered objects, the more different they are between
different clusters and the more similar they are in the same
cluster, the better the clustering effect.

4.1.1 Preprocessing

To eliminate the interference of the foreground in the training
frame and make clustering more effective, some preprocess-
ing is needed.

First, the mean normalization process is performed on the
vector of each pixel. This reduces the number of clusters to
reduce the complexity of the operation.

p � 1

T
(I1 + I2 + I3 + ... + IT )

P ′(x, y) � P − p · E
(5)

p is the mean of the elements of vector P, E is a matrix
with the same dimension as P, and the elements are all 1 s.

The second is filtering. Since the training images we use
are real scenes, occasionally there are foreground pixels in
the image when dynamic objects pass through. For example,
in the 100th frame, when a dynamic target passes through
point P (x, y), the point becomes a foreground pixel, and the
intensity value changes from the original pt to p′

t . Some-
times it will have a great impact on the background model.
Therefore, filtering is necessary. In the proposed method,
the median filter is used, which can effectively eliminate the
noise points generated by the foreground without affecting
the normal points. After the preprocessing steps are com-
pleted, K-means clustering is performed on the vectors Q
(u, v), where Q represents the vector of pixels in the image,
as shown in Fig. 4.

4.1.2 Determination of the value of K in clustering

The determination of the value of K has a great impact on
the accuracy of the method. If the number of clusters is large,
an image will be divided into many small blocks, and the
reference points will be close together, which will cause the
problem that the foreground objects cover the reference area.
If the number of clusters is small, the properties of some
points in the same class will not meet the requirements of the
reference points because of the differences in the statistical
properties of the points.

One can use the commonly named “elbow method” to
determine the value of K value. Its core indicator is sum of
the squared errors (SSE).

SSE �
k∑

i�1

∑

p∈Ci

∣∣p − pi
∣∣2

Ci is the i-th cluster, p is the sample point in Ci, and pi is
the cluster center of Ci (the mean of all samples in Ci). SSE
represents the clustering error of all samples. As the num-
ber of clusters k increases, the sample division will be more
refined, the degree of aggregation of each cluster will gradu-
ally increase, and the SSE will naturally gradually decrease.
Usually, a set of data has an optimal clustering value. When
k is smaller than the optimal clustering value, increasing k
will greatly increase the degree of aggregation of each clus-
ter, and so the SSE will decrease greatly. When k exceeds
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Fig. 5 Image before and after
clustering. Each color represents
a cluster

the optimal clustering value, the aggregation will decrease
rapidly, and so the SSE will decrease slowly. The curve of
the sum of the squared errors to the number of clusters looks
similar to an elbow, and so it is called the “elbow method”.
The value of K at the inflection point of the curve is usually
the optimal number of clusters.

In an image, the number of objects is usually determined,
and so the number of pixel classes is also determined. After
determining the optimal number of clusters K , the optimal
number of image segmentations is also determined.

4.2 Static backgroundmodel

In an image, most pixels are stable.We called these pixels the
static background part. In the static background part, there are
no frequent foregroundor background changes.After cluster-
ing, the part can be ideally divided into several clusters where
the points in the same cluster have similar statistical proper-
ties. For each target point,we evenly select the reference point
in the area of the class that the target point belongs to. This
means that the reference points are distributed as dispersedly
as possible. It not only ensures that the reference points have
similar properties to the target point, but also largely avoids
the false judgment due to foreground objects covering target
point and multiple reference points at the same time.

Suppose that we need to select n reference points for each
pixel. For the convenience of the expression, we represent
the target pixel as P. The pixel’s intensity vector is

P � [p1, p2, p3, p4...pt ]

Its n reference points are Q1, Q2… Qn, which are repre-
sented by n vectors:

Q1 � [q11 , q
1
2 , q

1
3 , q

1
4 ...q

1
t ]

Q2 � [q21 , q
2
2 , q

2
3 , q

2
4 ...q

2
t ]

......

Qn � [qn1 , qn2 , qn3 , qn4 ...qnt ]

(6)

The intensity vector curves ofQ andP have similar shapes
and the correlation coefficient between vectors is close to 1.
In the ideal case, the intensity of each reference pixel differs
from the target pixel by a constant C.

C1 � p11 − q11 � p12 − q12 � ... � p1t − q1t

C2 � p21 − q21 � p22 − q22 � ... � p2t − q2t
......

Cn � pn1 − qn1 � pn2 − qn2 � ... � pnt − qnt

(7)

In other words,

C1 � C1
1 � C1

2 � ... � C1
t

C2 � C2
1 � C2

2 � ... � C2
t

......

Cn � Cn
1 � Cn

2 � ... � Cn
t

(8)

However, in the actual situation, C1,C2,Cn , etc. are not
exactly the same, but rather they float around a certain value.
In other words, the values of C1

1 ,C
1
2 ... C1

t are not exactly
the same asC1

1 , but they are nearC
1
1 . Therefore, we can build

a Gaussian distribution model for it.

C1
x ∼ N (C1, σ 1 2

)

C2
x ∼ N (C2, σ 2 2

)

......

Cn
x ∼ N (Cn, σ n 2

)

(9)

where Cn
x is the difference between the target point and the

n′ th reference point at any time x . Cn is the mean value of
the difference between the target point and the n′ th refer-
ence point over a period of time. σ n2 is the statistical square
difference of the difference between the target point and the
n′ th reference point over a period of time. Their calculation
formulas are as follows.

Cn � 1

t

t∑

x�1

(px − qnx ) (10)
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σ n 2 � 1

t

t∑

x�1

(px − qnx − Cn)2 (11)

Therefore, for each reference point, there is an accompa-
nying Gaussian distribution model composed of the differ-
ence Cx .

4.3 Dynamic backgroundmodel

4.3.1 Recognizing dynamic pixels

As described in the first part, not all backgrounds are static
or ideal in actual images. Some areas will be disturbed by
various complex environmental factors, such as the dynamic
background in the scene. We call these dynamic pixels.

Usually, after each image is clustered, a cluster center is
generated for each cluster. The cluster center of a certain
cluster represents the central index of this cluster. In a cluster
with high stability, the distance between the vector of each
point in the class and the cluster center is relatively close,
such as the walls and roads of the same material in Fig. 5.

In this paper, we use the average Euclidean distance as a
measurement, and the calculation formula is as follows.

d � 1
T

√√√√
T∑

i�1

(pi − qi )2 (12)

where p and q are the elements in vectors P and Q, respec-
tively, and T is the dimension of the vector.

Figure 6 shows the two instances of the distance statistics
between the pixels of some classes and the cluster center in
some cluster. For some dynamic background points in the
image, their intensities in the video are constantly changing
and cannot be strictly classified into a certain cluster.

When the K-means is used to segment object classes, the
dynamic pixelswill be difficult to cluster into anymajor class.
The K-means will classify them into the closest major class,
but they will deviate farther from the clustering center, as
shown in Fig. 6. We can filter out dynamic areas utilizing
this property. In order to determine the threshold for filter-
ing dynamic background points, the distances between the
values of pixels and that of their respective cluster center are
counted. The mean m and standard deviation σ of these dis-
tances are calculated. In our method, those points that exceed
the mean value of 2.5σ are counted as dynamic background
points.

Based on the analysis above, when the scene contains a
dynamic background, the image pixels can be divided into
two parts. One is the static pixels with relatively stable char-
acteristics; and the other is the dynamic pixels, which usually
switch between two ormore static clusters.When the cluster-
ing method is used to segment object classes, dynamic pixels

will be difficult to cluster into any large cluster or they will
be classified into some cluster but will be far away from the
cluster center. Therefore, we can filter the area of dynamic
pixels based on statistical information.

4.3.2 Modeling dynamic pixels

Another key issue is how to find the two or more types of
objects to which the dynamic background points belong. We
deal with them separately from two aspects according to the
actual situation. In general, the dynamic pixels’ variation in
the scene is usually regular or frequent. This is a common
situation in real scenarios.

Figure (a) is a frame in a fan blade rotation video, Figure
(b) is the intensity value change of point P in thefigure, Figure
(c) is the envelope extracted from Figure (b), and Figure (d)
is the matched cluster center.

Figure 7 shows the statistical intensity of the pixels of the
fan blades during the period of time when the background
fan is rotating, which can ideally represent some situations of
dynamic pixels. In the picture, the fan is spinning constantly.
The rotating fan blade part in the image can be regarded as
a dynamic background part. This part shifts between the fan
blades and the background behind the fan. Therefore, we can
view this part of the dynamic background as two objects: the
fan blades and the background behind the fan. Therefore, we
should use the properties of these two types of objects to
represent the dynamic background.

It can be seen from the figure that due to the frequent
rotation of the fan blades, the statistical characteristics of
the pixels are shifting between the two states. Therefore, two
combined curves can be found by solving the upper and lower
envelope solutions. That is, we find the intensity character-
istics of the pixel when it belongs to the fan blade and when
it belongs to the background behind the fan. These two gray
properties together represent the property of this dynamic
pixel.

By correlating these two curves with the clustering cen-
ters of each cluster in turn, the two closest clusters can be
matched. Similarly, the dynamic background points, such as
the frequently shaking leaves in the scene, the dynamic edges
caused by frequent camera shakes, etc. can be processed in
the same way. The formula used to correlate cluster centers
is as follows:

r �
∑n

i�1 (qi − q)(ci − c)
√∑n

i�1 (qi − q)2
√∑n

i�1 (ci − c)2
� Cov(C, Q)

σCσQ

(13)

where Q is the envelope curve vector and C is clustering
center of each cluster.When dynamic pixels can be expressed
by two static clusters, we can treat the dynamic pixels as
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Fig. 6 Distance statistics between the pixels of some classes and the cluster center in two of clusters

Fig. 7 Processing of dynamic background points

points that satisfy the statistical characteristics of two types
of objects. Then, we select the reference points in the two
types of objects and model them as static background pixels.

In a few cases, the dynamic pixels in the scene are irregu-
lar and do not change frequently. We call them messy pixels.
Usually, we cannot accurately find the static clusters to rep-
resent the dynamic pixels by calculating the envelope. We

can pick the pixels that are most similar to the target pixel
in the entire image as its reference points. In other words,
we calculate the correlation coefficient between each point
in the image and the target pixel. Then, we find the pixels
with the largest correlation coefficient.

In our algorithm for dealing with dynamic backgrounds,
we process the first case: the dynamic pixels’ variation is
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usually regular or frequent. Then, we calculate the envelopes
for the dynamic pixels and find the cluster centers that match.
When the envelope cannot be found or the envelope is quite
different from the cluster center that matches, we treat them
as the second case.

One possible result after such processing is that there may
be a small number of dynamic pixels forwhichwe cannot find
suitable reference points, leading to the result of unreliable
detection and some noise points appearing on the image.
However, such points are usually isolated that can be dealt
with using simple post-processing.

4.4 Object detection

According to the theory and algorithm described above, after
training, we have obtained the following information:

1. The types of the pixels, whether they are static or
dynamic;

2. Reference points Q1, Q2, Q3 … Qn of each target pixel.
For dynamic pixels, we pick two or more group of refer-
ence points in the corresponding clusters that represent
them, respectively.

3. Gaussian distributions formed by the intensity difference
between the target pixel and its reference points.

When conducting foreground detection, we calculate the
difference between the target point and its reference points.
If the difference value still matches the Gaussian distribution
that was established after trained, we can treat the target pixel
as a background point. Otherwise, if this relative relationship
is destroyed, it means that the pixel is likely to be occupied
by the foreground object.

ωk �
{

1 i f |P − Qk − ck | ≥ η · σk
0 else

(14)

F �
n∑

k�1

ωk (15)

result �
{
f oreground i f F > th
background else

(16)

whereωk is the k-th judgment result, P is the target pixel, Qk

is the intensity at the k-th reference point, ck is themean value
of the difference between target point and reference point in a
Gaussian distribution, σk is the corresponding standard devi-
ation, and η is a threshold constant. The detection threshold
is controlled by changing the value, thereby optimizing the
detection result. n is the total number of reference points. F
is the comprehensive judgment result of all sample reference
points, and th is the judgment threshold, which means that
if the number of positive points is greater than the threshold
value th, the pixel is judged to be the foreground.

For dynamic pixels, because we do not know the state
when conducting detection, we need to use its two types of
reference points for verification. If their relative relationship
to both groups of reference points is broken, we can treat the
target pixel as a foreground point. The logical expression is
as follows:

result �
{

f oreground i f result1 > th and result2 > th
background else

(17)

where result1 and result2 are the results of the two types of
state judgment.

5 Experimental results

To evaluate the proposed method, we selected several rep-
resentative datasets to test it. Three of them come from the
CDnet-2014 dataset, and two are videos taken by us.

Datasets (a), (b), and (c) are the CDnet-2014 datasets.
Datasets (b) and (c) are cases where there are a large number
of dynamic background points in the scene. Datasets (d) and
(e) are the video frames of the scenes taken by us. In data set
e, the light source of the scene changes slowly, and the fans
in the background are constantly rotating. In data set f, the
scene light source changes rapidly several times, and the fan
in the background is also constantly rotating. Dataset (a) can
be regarded as a baseline, and the datasets (b), (c), (d), and
(e) all contain complex dynamic backgrounds.

We use three indicators to evaluate the quality of the test
results: precision, recall and F-measure. The formulas for the
evaluation measures are as follow.

Precision � (
T P

T P + FP
) (18)

Recall � (
T P

T P + FN
) (19)

F−measure � 2Precision · Recall
Precision + Recall

(20)

where TP, FP and FN stand for the numbers of true positive
pixels, false positive pixels and false negative pixels, respec-
tively. The F-measure is the weighted harmonic mean of the
Precision and Recall [48].

We chose some other methods to compare with the pro-
posed method. The GMM [31] and KDE [34], which are two
well-known traditional algorithms, are the two main basic
standard techniques that are often used tomake basic compar-
isons.ViBe [38],which is the leading unsupervised technique
for foreground detection, has a fast speed when conducting
detection and has a good effect. TheCPB [43] is a recent algo-
rithm for moving object detection using the idea of reference
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spatial pixels and it has a good effect under strong illumina-
tion changes and dynamic backgrounds. FgSegNet_M is a
supervised deep learning algorithm [14].

To compare the results of each algorithm under different
conditions, we divide the experiment into two parts: offline
detection and online detection.

In the offline detection experiment, the scenes are known
and the groundtruth is available.We can select any number of
image frames and any part of the images in training set as the
training set and use it to initialize the model and establish the
algorithmmodels. Its purpose is to achieve the best detection
effect and achieve the highest detection accuracy.

Online detection experiments are used to compare the per-
formance of each algorithm in practical applications. When
conducting online detection, only events that have occurred
are available. In online experiments, we divide the training
set into two parts. The first part is considered to be the avail-
able image frames that are used to initialize the model or
train the network and the second part is considered to be the
part that is not yet been used for detection. We considered
two situations: seen scenes and unseen scenes. The differ-
ence is that some groundtruths have been marked based on
the already acquired image frames in seen scene whereas
there is no groundtruth in unseen scene. The experiment for
the Online detection of an unseen scene is more in line with
the actual application scene, and so those results are better
able to reflect the effectiveness of the methods.

5.1 Experimental details

In our method, there are some parameters that need to be set
manually. In the experimental verification, we chose a uni-
fied parameter calculation method. The parameters we need
to determine in the experiment are as follows. The number
of clusters K , reflecting the number of object properties in
the image, is set to 5. The total number of reference points
n (in formula (5)) is set to 16. With more reference points,
it is more conducive to make the correct judgement of the
target point. However, after numerical study, we found that
when the number of reference points exceed 15, the influence
on the accuracy is minimal. Considering that more reference
points demand more calculation, in order to integrate accu-
racy and calculation efficiency, we have chosen the number
of reference points as 16. The judgment threshold value th
(in formula (15)) is set to 14. It is correlated with the num-
ber of reference points n and reflects the fault tolerance rate
of the method. In the experimental evaluation, we set two
points as fault tolerance. In fact, in the experiment, when
the threshold is set to 10–14, the impact on accuracy did not
show a big difference. But when the threshold th is less than
10, the result showed higher recall and lower precision. The
value of η (in formula (13)), representing the severity of the
judgment, is set to 2. After clustering, the points in the same

cluster have been guaranteed to have similar characteristics.
Thus, when there is no foreground object, the target point is
similar to the reference point, and when foreground object
covers the target point, there will be a significant different
between target point and reference point. The coefficient η

as 2 is adequate for our method.
The environment configuration for the experiment is as

follows: The CPU is Intel Core i5-7300HQ, the RAM is 32
G and the GPU is NVIDIA GeForce GTX 1050, GPU mem-
ory is 2 G. The algorithm is implemented in MATLAB. The
number of frames to initialize the background is 600. The
average time taken to build the background model is about
285 s.

5.2 Offline detection

Tomake the comparison fairer, the number of frames in train-
ing sets is set to 600 and they are extracted from the dataset
at equal intervals. This is the best condition for the experi-
mental algorithms. The KDE can use the images of each time
period in the dataset to establish the sampling set to obtain
a more reasonable and credible background probability. For
the CPB, the statistics of pixels can be better represented. For
FgSegNet_M (supervised method) [14], the images include
more foreground objects and complex backgrounds to be
learned. For the proposed method, the longer the time span
is, the more fully the attributes of image pixels and objects
can be reflected. The experimental results are shown in Fig. 8
and Table 1.

From the comparison of experimental results, we can see
that our method achieves promising results compared to the
classic and state-of-the-art unsupervised methods. In addi-
tion, for FgSegNet_M [14], because it is a supervisedmethod
and needs the groundtruths for neural network training, it
usually has higher accuracy than unsupervised methods.
However, our method has a comparable detection quality
under strong illumination changes and dynamic backgrounds
without the groundtruth or signals.

5.3 Online detection of seen scene and unseen scene

In this part, we take the first 600 frames of the data set as
training set to initialize the model, and the rest of the image
frames as the test set.

For the GMM and ViBe, their mechanism is as follows:
use the first frame to initialize the background model, and
then update the model using the input image. Therefore,
the offline detection and online detection are implemented
in the same way, and so their offline detection and online
detection results are the same. For the KDE, CPB, and pro-
posed method, changing the training set or sampling set will
have a certain impact on the results. For all the unsuper-
vised methods, since no groundtruth is required, the results
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Fig. 8 Visual comparison of various methods for offline foreground detection

Table 1 Comparison of the proposed method with other methods in offline detection using the precision, recall, F-measure

(a) (b) (c)

precision recall F-measure precision recall F-measure precision Recall F-measure

GMM [31] 0.9455 0.5948 0.7302 0.5468 0.2198 0.3135 0.5406 0.1877 0.2786

KDE [34] 0.9836 0.8817 0.9258 0.8617 0.8042 0.8320 0.5203 0.7756 0.6228

ViBe [37] 0.2328 0.8077 0.3615 0.3042 0.7832 0.4309 0.6172 0.6069 0.6121

CPB [42] 0.8991 0.7524 0.8192 0.9025 0.7037 0.7908 0.7365 0.7003 0.7179

FgSegNet_M [14] (supervised) 0.9978 0.9127 0.9534 0.9837 0.7894 0.8759 0.9247 0.8649 0.8938

IPP 0.9354 0.9334 0.9344 0.9731 0.9436 0.9564 0.8051 0.9023 0.8509

(d) (e) Average

precision recall F-measure precision recall F-measure precision Recall F-measure

GMM [31] 0.3013 0.6488 0.4777 0.4151 0.5628 0.4776 0.4509 0.4048 0.3703

KDE [34] 0.9033 0.7369 0.8117 0.6872 0.6511 0.6686 0.8156 0.7854 0.7909

ViBe [37] 0.1578 0.8646 0.2658 0.1798 0.7923 0.2924 0.2984 0.7709 0.3925

CPB [42] 0.8127 0.9107 0.8589 0.8655 0.8546 0.8600 0.8433 0.7843 0.8094

FgSegNet_M [14] (supervised) 0.9800 0.8448 0.9027 0.9970 0.7698 0.8628 0.9766 0.8363 0.8977

IPP 0.9143 0.8793 0.8965 0.9372 0.7334 0.8229 0.9074 0.8647 0.8817

in seen scenes (with the groundtruth) and unseen scenes (no
groundtruth) have no difference. The experimental results are
shown in Fig. 9 and Table 2 We can see from the results that
for online detection, due to the limitations of the training set,
the detection results of thesemethods are somewhat affected,
but the impact is small. Therefore, we can conclude that in
offline detection, unsupervised methods can still maintain
their detection quality. In addition, among all the algorithms

involved in the experiment, the proposed method performs
best.

Regarding FgSegNet_M, it is a supervised method and
depends on numerous foreground training samples with
groundtruths, which is difficult to achieve in online detec-
tion. We experiment in two ways.
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Fig. 9 Visual comparison of various methods for online foreground detection

Table 2 Comparison of the proposed method with other methods in online detection using the precision, recall, F-measure

(a) (b) (c)

precision recall F-measure precision recall F-measure precision recall F-measure

GMM 0.9455 0.5948 0.7302 0.5468 0.2198 0.3135 0.5406 0.1877 0.2786

KDE 0.9814 0.8814 0.8397 0.7827 0.8056 0.7940 0.5336 0.7943 0.6383

ViBe 0.2328 0.8077 0.3615 0.3042 0.7832 0.4309 0.6172 0.6069 0.6121

CPB 0.8868 0.7499 0.8126 0.6883 0.9004 0.7802 0.7887 0.6445 0.7094

FgSegNet_M [14] (unseen scene) 0.9916 0.8595 0.9209 0.2636 0.3696 0.3077 0.9288 0.7309 0.8180

FgSegNet_M [14] (seen scene) 0.9918 0.9723 0.9810 0.9920 0.7459 0.8193 0.9965 0.8071 0.8780

IPP 0.9198 0.9340 0.9268 0.9794 0.9633 0.9712 0.8467 0.9007 0.8729

Except for FgSegNet_M, other methods are all unsupervised methods. Since no groundtruth is required, the results of each method in seen scenes
(with the groundtruth) and unseen scenes (no groundtruth) have no difference

5.3.1 No groundtruth (unseen scene)

In an unseen environment, there is no groundtruth prepared
in advance. Nevertheless, the convolutional neural network
has been trained in other scenes and has learned some fore-
ground shape and motion patterns. The experimental results
are shown in Fig. 9. We can see from the visual display that
some common objects, such as small vehicles and ships, can
be detected. However, the quality is poor, as shown in Fig. 9
columns (a), (b), and (c). However, when there is a large area

dynamic background in image, the method fails, as shown in
Fig. 9 columns (e) and (f).

It can be concluded from both the theory and experiment
that the supervised learning method almost fails without the
groundtruth. The unsupervised method is obviously better
than the supervised learning method.

5.3.2 With the groundtruth (seen scene)

The first 600 frames of the dataset are regarded as the occur-
rence times, which can be used to produce the groundtruths
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and conduct training. The rest of the dataset is used for test-
ing.

In the experiments for datasets (a), (b), and (c), because
the cars and boats in the scenes have appeared many times in
the first 600 frames, after the neural network is trained, they
can still be successfully detected, but the detection quality
has decreased significantly. In the experiments for datasets
(e) and (f), the ball appears very rarely in the training set
(the first 600 frames). As a result, the algorithm can hardly
detect the existence of balls when conducting detection, as
shown in Fig. 9. Therefore, in online detection, if a newobject
appears in online detection, the supervised method will not
be able to detect it unless the object is continuously added to
the training set for training, which is undoubtedly difficult to
achieve in online detection. In addition, because the training
set is optimal, its detection quality is also worse than those
of the unsupervised methods.

From above experiments, we can conclude that unsu-
pervised methods are much more effective than supervised
methods during online detection and the proposed method
performs well in both offline and online detection.

6 Conclusion

In this paper, we propose a newmodel and provide a new idea
for foreground detection at both the pixel and object levels.
It does not need to be updated in real time and can be used
for online detection.We conducted comparative experiments
using different methods and provided the analysis results of
supervised methods and unsupervised methods for offline
detection and online detection. The proposedmodel achieves
a promising result and performs robust detection under strong
illumination changes and dynamic backgrounds.
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